

Methuselah Flash: Rewriting Codes for Extra Long Storage Lifetime

Georgios Mappouras, Alireza Vahid, Robert Calderbank, Daniel J. Sorin
 Department of Electrical and Computer Engineering

Duke University
{georgios.mappouras, alireza.vahid, robert.calderbank, sorin}@duke.edu

Abstract—Motivated by embedded systems and datacenters
that require long-life components, we extend the lifetime of
Flash memory using rewriting codes that allow for multiple
writes to a page before it needs to be erased. Although
researchers have previously explored rewriting codes for this
purpose, we make two significant contributions beyond prior
work. First, we remove the assumption of idealized—and
unrealistically optimistic—Flash cells used in prior work on
endurance codes. Unfortunately, current Flash technology has a
non-ideal interface, due to its underlying physical design, and
does not, for example, allow all seemingly possible increases in
a cell’s level. We show how to provide the ideal multi-level cell
interface, by developing a virtual Flash cell, and we evaluate its
impact on existing endurance codes. Our second contribution is
our development of novel endurance codes, called Methuselah
Flash Codes (MFC), that provide better cost/lifetime trade-offs
than previously studied codes.

Keywords—Flash memory; Coding; Lifetime; Endurance

I. INTRODUCTION
Flash memory is being increasingly used, due to its

increasing capacity and the narrowing of the cost differential
between Flash and other storage technologies (especially hard
drives). NAND Flash is the dominant technology of solid-
state drives (SSDs) and numerous other storage devices.
Typical storage devices use multi-level cells with 2 (SLC), 4
(MLC) or 8 (TLC) levels per cell. MLCs and TLCs are usually
preferred because they provide better storage density than
SLCs.

One drawback to using Flash is that its cells wear out after
a number of program/erase (P/E) cycles. That is, we can only
erase a Flash cell a given number of times before that cell can
no longer retain information. The number of P/E cycles that a
cell can tolerate is the lifetime of the cell and it depends on the
type of the cell used (SLC, MLC or TLC) and the Flash
technology node size. The node size is decreasing rapidly as
Flash cells continue to shrink at each generation in order to
provide greater density. However smaller node sizes can
endure fewer P/E cycles.

We seek to improve Flash’s endurance and, in doing so, it
is important to understand when and where endurance needs
to be improved. Solid state drives (SSDs) in typical personal
computers are an example where lifetime extension is
unnecessary, because the expected lifetime of an SSD exceeds
the 3-5 year lifetime of the computer itself. Because coding
techniques to extend the lifetime incur a cost—in terms of the
extra raw capacity required to provide a given amount of host-
visible capacity—we do not wish to pay that cost
unnecessarily.

In Figure 1, we illustrate the trade-off between lifetime and
cost in the context of a baseline that is today’s Flash with no
modifications to extend its lifetime. The x-axis is lifetime,
normalized to L, the lifetime of the baseline. The y-axis is
host-visible capacity, normalized to C, the host-visible
capacity of the baseline. The figure contains rectangles which
represent equal-cost (in terms of raw capacity) trade-offs
between lifetime and host-visible capacity. The baseline has a
rectangle of C host-visible capacity at L lifetime, which has
the same cost as the replication scheme (C/2 at 2L) and a
coding scheme (C/6 at 12L) we describe later. Note that equal
cost does not necessarily imply equal rectangle area.

Figure 1 also contains two dotted vertical lines that denote
target lifetimes for different applications. These dotted lines
are not meant to represent exact lifetimes for specific
applications, but rather to illustrate big-picture differences in
application lifetime needs. For example, we draw the dotted
line for personal computers to the left of L on the x-axis,
meaning that the baseline Flash suffices (This line could shift
to the right over time, as L decreases in each technology
generation). The dotted line for certain embedded systems that
require long life (e.g., space probes, embedded sensor
platforms, etc.) and SSDs in datacenters is far to the right of L
and requires a lifetime extension scheme even if it incurs a
reduction in host-visible capacity (at the same cost as the
baseline) and/or an increase in cost (to achieve the same host-
visible capacity as the baseline).

For those scenarios in which Flash lifetime needs to be
extended, there are two primary and largely complementary
approaches: endurance codes and wear-leveling. In this work,
we focus on endurance codes, in which we encode datawords

Figure 1. Host-visible capacity as function of lifetime, with fixed cost
(in raw capacity).

mailto:@duke.edu

to codewords before writing them to the Flash, so as to extend
the Flash’s lifetime.

We make two contributions in this work. First, we bridge
the gap between the idealized—and unrealistically
optimistic—Flash cells used in the prior work on endurance
codes. Prior endurance codes show promise [1, 2, 3, 4, 5, 6,
7], in theory, but they are incompatible with the current Flash
interface. The codes expect “ideal” multi-level cells, in which
each cell has some number of levels, L, and each cell can be
increased from level i to level j as long as i<j. Unfortunately,
current Flash technology has a non-ideal interface, due to its
underlying physical design, and does not, for example, allow
all seemingly possible increases in a cell’s level. In this paper,
we show how to provide the ideal multi-level cell interface,
by developing what we refer to as a virtual Flash cell, and we
evaluate its impact on existing endurance codes. We
demonstrate how to create virtual cells with any number of
levels independently of the Flash type and technology used.

Our second contribution is our development of novel
endurance codes, called Methuselah Flash Codes (MFC), that
provide far better cost/lifetime trade-offs than previously
studied codes. We start with the general concept of coset
coding [8, 9], in which each dataword to be written maps to a
unique coset of codewords. Coset coding provides multiple
options for which codeword to write, and our contribution is
the development of new heuristics for choosing codewords
from cosets so as to maximize the lifetime of Flash.

II. FLASH BACKGROUND
In this section, we describe how NAND Flash is organized

and operates, we discuss its endurance issues, and we explain
some important details of its interface that have a large impact
on coding. We consider only NAND Flash, because of its
ubiquity, and we use the term Flash to refer to it.

 Flash memory organization
A Flash chip consists of some number of blocks, where

each block contains some number (128-256) of pages. Page
sizes are typically on the order of 4-16KB, and pages are the
smallest units in Flash that can be read or written. Blocks are
the smallest units that can be erased, and thus a block erase
causes many pages to be erased at the same time.

To minimize block erases—which is important for
endurance, as we discuss later—Flash updates are not
performed “in place.” A write to update a page of data already
on the chip is performed to a clean page, and the page that held
the previous data is marked as invalid. The Flash Translation
Layer (FTL) software maintains the mapping from each
logical page to the location of its most recently updated data,
and it also performs garbage collection to free up blocks with
many invalid pages. To free a block, the FTL copies out any
valid pages to new free pages (in another block) and then
erases the block.

 Flash Cells and Wearout
Flash SSDs consist of NAND Flash cells, and each cell

can be interpreted as having two or more distinct levels. Flash
chips are often classified based on whether the cells are
interpreted as storing one bit per cell (SLCs), 2 bits per cell

(MLCs) or 3 bits per cell (TLCs). The name “single-level cell
(SLC)” is a historical misnomer; an SLC actually has two
levels, 0 and 1. Also, while MLC stands for multi-level cell it
actually refers to a cell of 4 levels. TLCs (triple level cells)
refer to 8 level cells.

 Without loss of generality, we will assume MLCs (i.e.,
each cell has 4 levels L0, L1, L2, and L3) in this discussion,
for the purposes of making the examples and explanations
concrete.

Writing to a Flash cell involves adding charge to the cell.
The amount of charge depends on the level desired; that is,
more charge is required when changing the level from L0 to
L2 than when changing the level from L0 to L1. Erasing a
cell removes all of its charge and sets its level to L0. (There
is no way to decrease a cell’s level except for erasing back to
level L0.) We assume that the Flash cells support what is
known as “program without erase” (PWE), i.e., a cell’s value
can be changed without being erased first, as long as the value
is being incremented [10]. We have experimentally tested that
we can perform PWE on reasonably modern Flash chips, a
Samsung K9LCG08U1M and a Hynix H27QDG8VEBIR SK.

Flash cells can be erased only so many times before they
wear out (i.e., cannot be written again), and this is the
fundamental problem we address in this work. Mohan et al.
[11] show how Flash cells may recover from wearout, to some
extent, but the fundamental problem of wearout remains.

 Important Issues in Flash Interface
The interface provided by Flash chips has two important—

and often overlooked—quirks that impact how one might
develop coding techniques for Flash.

First, one might expect that the level of an MLC can be
increased arbitrarily. That is, one might expect to be able to
change a MLC’s level from L0 to L1, L2, or L3, from L1 to
L2 or L3, and from L2 to L3. Unfortunately, this is not the
case. At the physical level, a MLC’s level can be changed
from L0 to L1 or L2 (but not L3), from L1 to L3 (but not L2),
and from L2 to L3. Furthermore, the interface provided to
Flash does not even provide access to cells of any kind; rather,
the interface currently provided by the FTL software is simply
pages of bits. A Flash chip can be accessed by reading/writing
bits on pages, but not by reading/modifying levels of cells. A
code that assumes the naïve interface—ideal multi-level
cells—will not work on today’s Flash chips.

Second, one might expect that a single MLC represents
two bits on a given page. However, that is not the interface
provided by today’s chips. Instead a single MLC represents
one bit on one page (let us name that “page x”) and one bit on
another page (let us name that “page y”) in the same block.
Once again, a code that assumes the naïve interface will not
work on today’s Flash chips.

Figure 2 describes those limitations schematically. We
observe that a transition from L1 to L2 implies that a bit in
page x should flip from 1 to 0. This however is not a legal
transition and the FTL will not allow it to occur. Additionally
the transition from L0 to L3 cannot be performed in a single
program request as that would require programing both pages
x and y.

Although some researchers have identified these interface
quirks [12, 13], we are unaware of any prior work on rewriting
codes that accounts for these quirks.

III. THEORY OF ENDURANCE CODING
Methuselah Flash builds upon a coding technique

developed by Jacobvitz et al. [6]. We start by describing a
technique known as waterfall coding [14], which Jacobvitz et
al. use to connect the concept of coset coding with the use of
multi-level cells. All of the work described in this section is
prior work; our contributions are in the next three sections,
where we apply this prior theory to realistic Flash.

 Waterfall Coding
 We assume, for purposes of explanation, that pages

consist of ideal 4-level cells. However, instead of using the 4
levels of the cell to hold 2 bits of data (as is typical), waterfall
coding [14] uses the 4 levels to hold 1 bit of data, as illustrated
in Figure 3. Levels L0 and L2 correspond to a bit value of 0,
and Levels L1 and L3 correspond to a bit value of 1. An
erased cell is at Level L0 (bit value 0). Subsequent writes to
the cell add charge to it to increase its level. Thus, an erased
cell can progress from bit value 0 (L0) to 1 (L1) to 0 (L2) and
back to 1 (L3). At Level L3, the cell is saturated with charge
and may not be programmed again, so a subsequent write to
change the bit value to 0 requires the cell to be erased. Using
a 4-level cell in this way enables a single cell to be written
multiple times before it needs to be erased. Throughout this

paper, we leverage waterfall coding when we consider
(virtual) cells with more than 2 levels.

 Write Once Memory (WOM) codes
The idea of reusing a “write-once” memory was first

presented by Rivest and Shamir [15]. Since then WOM codes
(and variations of them) have been extensively used in order
to enhance Flash’s lifetime [2, 3, 4, 5, 7, 16, 17]. The general
idea is to represent a number of bits (b) with a number of
multi-level cells (m), where each cells has a number of levels
(L). By increasing the level of one or more of the m different
cells you can re-program the b bits to a different value.

How the different sequences of b-bits are mapped to the
ܮ possible values of the cells depends on the specific
implementation. A simple example of a WOM code is
presented in Figure 4, where 3 2-level cells (ovals) are used to
store 2 bits (values above or below the ovals). This WOM
code enables two writes before erasing.

 Coset Coding for Endurance
In this section we present the basic idea of coset codes and

how they can be used in order to increase Flash lifetime. We
also demonstrate how coset codes are generated, focusing on
the particular coset codes that are the basis for Methuselah
Flash Codes.

1) Using Cosets
Consider a single Flash page to be written, and assume the

page-sized dataword to be stored is X. In typical storage
systems, there is a one-to-one mapping between X and the
codeword that is actually written, which we denote as Y. Y
could, for example, be X augmented with parity bits in an error
correcting code (ECC).

The key feature of coset coding is that it changes the model
from a one-to-one mapping to a one-to-many mapping.
Consider a system with k-bit datawords and n-bit (n=k+c)
codewords. With coset coding, we divide the n-bit space into
equal sized cosets. We perform a one-to-one mapping of each
k-bit dataword to a coset, i.e., we have 2k cosets, each with
E=2c codewords. That is, for any given dataword X, there are
E possible codewords {Y1…YE} that we can write. There is a
one-to-one mapping from a dataword to coset but a one-to-
many mapping from a dataword to possible codewords.

Figure 4. A WOM code example. Writing two bits twice in three 2-level
cells. Figure 3. Waterfall Coding for ideal MLCs.

Figure 2. An MLC with its allowed transitions.

Benefit: We choose the codeword that optimizes an objective,
and our high-level objective in this work is postponing
wearout. In Section V.A, we precisely state the concrete
objectives that enable us to postpone wearout.
Cost: The cost of coset coding is its overhead for representing
a codeword. Each codeword has n=k+c bits, and the extra c
bits are the overhead for the code. A code’s cost is often
referred to as its rate, which is defined as the dataword size
divided by codeword size.

2) Generating Cosets
The key to coset coding is coset generation, which is the

process of dividing the codeword space into 2k cosets, where
each coset has E=2c codewords. Coset generation is
performed using a code, and there are many codes that can be
used for this process. These codes include block codes and
convolutional codes. Different codes offer different trade-offs
between overhead (i.e., how many extra bits are required to
represent a codeword compared to a dataword) and flexibility
(i.e., how many options are in each coset). The drawback with
block codes is the difficulty in matching bit patterns across
block boundaries. However, convolutional codes have no
block boundaries except at the beginning and at the end and
therefore convolutional codes are more suitable for our work.
In this paper, we use convolutional codes of rate 1/2, 1/3, 1/4,
and 1/5 to create coset codes of rate 1/2, 2/3, 3/4, and 4/5,
respectively.

There are various characteristics that define a
convolutional code, such as rate and number of states. As
mentioned above, we consider various rates in this work. We
also considered multiple rate-1/2 convolutional codes with
different number of states. Increasing the number of states in
the state machine provides a bigger set of codewords to choose
from; therefore allowing greater benefits to be achieved.
These greater benefits come at the cost of negligibly lower
rates.

All of the information required to construct the codes we
use can be found in Table 12.1 (c) of Lin and Costello’s
textbook [18].

IV. VIRTUALIZING FLASH CELLS
Our first goal is to bridge the gap between the interface

provided by the FTL software in Flash memories and the ideal
multi-level cell interface assumed by prior work in coding.

The ideal interface—the interface assumed by most
coding theorists and the interface we seek to provide with our
virtual cells—provides the illusion of a cell with levels 0 to L-
1, and each level can be increased from level i to level j as
long as i<j. If a cell reaches level L-1, it can no longer be
programed until the cell is erased (as part of the block being
erased).

To achieve this ideal interface, we build on the existing
interface that provides pages with bits. We provide a general
solution that can be used to generate virtual cells (v-cells) with
any number of levels, independent of the type of physical cells
that are used in the Flash chip (SLC, MLC, or TLC).
Regardless of the technology, our approach to all v-cell
designs remains the same: interpret the values of multiple bits
of the same page as the levels of a single v-cell.

Our approach overcomes the limitations imposed by the
interface provided by Flash chips, which is pages of bits rather
than cells with levels. Although there are other possibilities,
we choose to implement the virtual cell interface by
augmenting the FTL software, which serves as the bridge
between the device driver software on the host computer and
the Flash chips. As illustrated in Figure 5, we extend the FTL
with the ability to perform coding on top of v-cells; extensions
are shown as shaded software modules within the FTL. The
software module that implements v-cells provides the v-cell
interface that supports independently written coding
modules. None of these changes to the FTL are visible to the
host computer.

We now present two examples of virtual MLCs that we
have developed.

 Example 1: A 4-Level Virtual Cell
In order to create each 4-level v-cell, we group three

consecutive bits of a page. The level of the v-cell is
determined by counting how many of the three bits are at a
value of 1. Thus a v-cell in level L0 has its three bits at value
000. A v-cell in level L1 has its three bits at value 001, 010,
or 100, a v-cell in level L2 has its bits at 011, 101, or 110, and
a v-cell in level L3 has its bits at 111. We illustrate this v-cell
and the mappings from levels to bits in Figure 6. Because
some levels have multiple bit representations, we can
transition between them in different ways.

We can now use this v-cell as an ideal MLC. We can
choose to store one or more bits in it. We can also implement

Figure 5. Implementing the virtual cell interface by extending the FTL software.

waterfall codes, WOM codes, coset codes or any other code
on top of it.

 Example 2: A 8-Level Virtual Cell
To create an 8-level v-cell we need to group the bits in

sequences of 7 bits. Notice that any L-level v-cell can be
generated by grouping L-1 bits together. This grouping
provides us with a “bigger” cell that is shown in Figure 7.

For simplicity we do not show all the transitions and all
the representations for each level. However one can reason
about them by using the same procedure as we did for creating
the ideal 4-level cell.

V. METHUSELAH FLASH
Methuselah Flash Codes (MFCs) build upon the theory of

coset coding. Our key innovation in this work—beyond
developing the v-cells that facilitate coding—is developing
heuristics for choosing codewords in cosets so as to provide
the best Flash endurance. A MFC is a coset code that uses our
heuristics. In our evaluation later in this paper, we experiment
with different coset codes, but we use the same codeword
selection algorithms. Without loss of generality, we assume
that all MFCs are implemented on top of ideal 4-level v-cells.

 Codeword Selection Objectives
With coset coding, a dataword maps to a coset of

codewords, and we can select any codeword from that coset
to write. We now use three examples, shown in Figure 8, to
illustrate our three objectives in this selection process. Figure
8(a) shows the initial value of a page with 12 4-level v-cells
and we use this same initial value in all three examples. The
numbers indicate the level of each v-cell.
(1) Avoid Codewords that Increment Saturated Cells.
Example 1, in Figure 8(b), shows two possible options for
which cells to increment, assuming that we have used coset
coding to provide two possible codewords, Yi and Yj, for each
dataword X. The top option, Yi, is unwriteable, because it
requires an increment of a cell (shaded in the figure) that is
already at level L3. The bottom option, Yj, does not increment
that cell and thus choosing it postpones the need to erase.
Intuitively, our goal is to avoid incrementing cells at L3 and,

in turn, to avoid incrementing cells to L3 if other cells can be
incremented instead.
(2) Minimize the Number of Cells Incremented. Example
2, in Figure 8(c), shows another two options for writing. In
this example, Yj is preferable to Yi because it increments fewer
cells and thus, all other things being equal, postpones erasing
for longer.
(3) Balance Increments Across Cells. Example 3, in Figure
8(d), shows two more options for writing, where both
increment the same number of cells. Despite this seeming

Figure 8. Codeword Selection Examples

Figure 6. Using the v-cell technique to create an ideal 4-level cell.

Figure 7. Using the v-cell technique to create an ideal 8-level cell.

equivalence, Yj is preferable to Yi because it balances the way
that cells are incremented better; the top option increments
cells at L2 (shaded), whereas the bottom option preferentially
increments cells at L0 or L1. The bottom option is thus better
at postponing erasing.

MFCs integrate these three objectives into a unified metric
function that determines a cost for each possible codeword
that we could write. This metric function is used by the Viterbi
algorithm to search a coset and decide which codeword
achieves the best (minimum) cost, i.e., performs better in all
of these three objectives.

The overall goal is to minimize the cost of writing to a
page, which is the sum of the costs of writing to each cell in
that page.

ݐݏܿ = ܿݐݏ

ୀଵ

The cost to write a given cell in a page is a function of the
current level of the cell (l), the level to which it would need to
be increased (l’), and the maximum number of levels in the
cell (L).

ݐݏܿ = ݂(݈, ݈ᇱ, (ܮ
The function f considers our three objectives. First, we

avoid codewords that increment saturated cells by setting f=∞
for saturated cells (i.e., l=L-1). Second, we minimize the
number of cells incremented by setting f=0 for cells that do
not need to be programmed (i.e., l=l’). Third, we balance
increments by setting f=l’ and thus favoring cell writes with
lower post-write levels.

݂(݈, ݈ᇱ, (ܮ = ൝

0, ݈ = ݈′
∞, ݈ ≠ ݈ᇱܦܰܣ ݈ = ܮ − 1
݈′, ݈ ≠ ݈ᇱܦܰܣ ݈ < ܮ − 1

The Viterbi algorithm efficiently decides which of the
candidate codewords achieves the minimum cost. Note that
the current level of each v-cell, as well as the maximum
number of levels in the v-cells, are independent of the
codewords. However each codeword leads to different post-
write cell levels and thus a different cost.

 Integration with Error Correction
Flash chips are expected to tolerate errors in cells.

Transient and permanent errors can affect cells, and current
Flash standards require the ability to correct at least one error
per 1024 cells. For example, current SSDs use error
correcting codes (ECC) for this purpose.

Although error correction is mostly complementary to our
goals and not the focus of this paper, it is important to note
that the coset coding technique we use [6] has already been
shown to be compatible with error correction. The key idea is
to ensure that cosets consist solely of valid ECC-protected
codewords. We still have a mapping from a dataword X to a
coset of codewords {Y1…YE}, and we can now ensure that all
elements Yi are valid ECC-protected codewords.

To maintain the same number of elements per coset while
providing error correction, we must increase the size of each
codeword and thus decrease the rate of the code. Recall that
each coset contains E=2c codewords. Without error
correction, all 2c c-bit vectors could belong to cosets, but to
provide error correction we must discard those c-bit vectors

that are not valid ECC-protected codewords. Thus we need a
larger value of c if we are not going to use all of the vectors in
the space of c-bit vectors. In this way, adding error correction
increases the storage cost of coset coding.

There are two considerations when choosing the specific
ECC to use. First, the choice of ECC determines how many
errors can be corrected (e.g., SECDED) and how much
storage overhead is required for error correction. Second, the
ECC must be “compatible” with the code used for coset
generation.

It is important to note that a naive implementation of ECC
fixes a division between information bits and parity bits.
Schechter et al. [19] showed that such an implementation can
hurt endurance (of PCM, but similar reasoning applies to
Flash) because the ECC bits get flipped far more frequently
than the data bits they protect. Indeed, if we simply computed
ECC for each codeword and appended ECC to the codeword,
we would hurt our potential lifetime gain as the cells that are
used to store ECC bits will saturate way faster than the rest of
the cells; however, when ECC is integrated with the coset
code into a single code, we preserve all of the balancing
properties of the coset code.

Because the focus of our work is on postponing wearout,
rather than tolerating errors, we do not further consider ECC
in this paper. We simply note that it is a complementary
feature that could be added without affecting our MFC
heuristics for choosing codewords within cosets. The MFCs
we demonstrate and analyze assume no error protection.

VI. IMPLEMENTATIONS
In this section, we present the implementations for

different codes on top of the v-cell interface. We demonstrate
MFCs as well as a WOM code. Although WOM codes are
already extensively used in prior works, here we analyze their
gains under a realistic implementation and use those results as
a comparison point. We also remind the reader that all our
implementations are based on the 4-level v-cells.

 WOM
For the WOM code, we use the 4-level v-cell to store two

bits of data. Thus the implementation has an overall rate of
2/3, because each v-cell—which consists of three bits—holds
only 2 bits. In other words, for a raw capacity of C we have a
host-visible capacity of 2/3C.

In Figure 9 we demonstrate how the different
representations of two bits are mapped to different states and
levels of the v-cell. Note that some levels provide multiple
options by taking advantage of the multiple paths between
levels. Under each state we mark the bits stored at that state.
We also demonstrate an example as we re-program the cell in
Figure 9 in order to update its data. In the first re-program we
transition from L0 to L1 by flipping the first bit of the 3-bit
triplet representing the v-cell. Notice that by doing so the other
two options of L1 become unreachable. That means we can
only visit them if we first erase the v-cell. In this example the
cell is updated 4 times before saturating.

 Methusalah Flash Codes (MFCs)
All MFCs in this work use the metric function that was

presented in Section V.A. We present MFCs based on coset
codes with multiple rates; 1/2 (MFC-1/2), 2/3 (MFC-2/3), 3/4
(MFC-3/4) and 4/5 (MFC-4/5).

For MFC-1/2, we use the v-cells in two different ways, by
storing 1 bit per cell (MFC-1/2-1BPC) and 2 bits per cell
(MFC-1/2-2BPC) as shown in Figure 10. These two options
present a potential tradeoff between host visible capacity loss
and lifetime gains. Notice that, although MFC-1/2 is based on
a coset code with rate 1/2, the overall implementation has a
rate 1/6 when using the v-cell with 1BPC and a rate of 1/3
when using the v-cell with 2BPC.

For the rest of the MFCs we only explore the case where
each v-cell stores 1BPC. Thus the implementations of MFC-
2/3, MFC-3/4 and MFC-4/5 have a rate of 2/9, 1/4 and 4/15
respectively.

 Performance and Implementation Analysis
Any implementation of a coding scheme incurs overheads

in performance (latency and/or bandwidth) and energy. These
overheads arise due to both the logic for encoding/decoding
and the extra Flash accesses that may need to be performed.
These overheads are not unique to MFCs or re-writing codes,
but rather apply to any coding scheme that is used for any
purpose.

In the context of Flash, which has relatively slow access
times (compared to, say, SRAM or DRAM), the logic for
encoding/decoding incurs relatively little overhead.
Moreover, the performance impact of encoding/decoding can
be mitigated with special-purpose hardware, if desired.

The more challenging overhead arises due to the need for
extra accesses to the Flash. A code with rate r (say, 1/2)
requires each Flash access to read or write 1/r times more bits
than an uncoded Flash. If a user accesses one page of data,
the implementation must access 1/r pages. The overhead of
these extra accesses could be mitigated by exploiting
parallelism within and across Flash chips, when possible. It is
also possible that a custom Flash chip design, targeted for re-
writing codes, could have larger page sizes in order to fit more
data per page and thus require fewer reads/writes per access.

Coding overheads depend highly on both the code used
and the details of the overall implementation. For example, a
re-writing code could be implemented at different system
levels (OS, drivers, or FTL) and could be accelerated with
specialized hardware to reduce performance overhead.

These overheads are inherent to any coding scheme, and
they are a necessary price to pay to extend lifetime. It is not
the case that we can choose a lifetime extension scheme
without overheads; rather, we decide how much lifetime
extension we need and we then engineer the system to
minimize the overheads as best we can.

VII. METHODOLOGY
We now describe how we evaluate MFCs and

quantitatively compare them to prior work.

 Evaluation Metrics
Our goal is to increase Flash lifetime while minimizing the

cost of doing so. Any lifetime extension scheme has some
cost, which is an increase in raw capacity and/or a decrease in
host-visible capacity. Raw capacity is the capacity that would
be visible if the Flash were used without any lifetime
extension scheme. The host-visible capacity—the capacity
visible to the user and the operating system for the whole life
of the Flash product—is less than the raw capacity if a coding
scheme is used. The rate of a code—which we previously
defined as the size of a dataword divided by the size of a
codeword—is thus also equal to the host-visible capacity
divided by the raw capacity; an uncoded Flash has a rate of 1,
and all coding schemes have rates less than 1.

The benefit of a lifetime extension scheme is its lifetime
gain, which we measure as its number of program/erase (PE)
cycles divided by the PE cycles of an uncoded Flash that
allows a page to be programmed once before being erased.

Figure 10. Two ways to map bits to cells for cosets.

Figure 9. WOM and v-cell representation. Under each state we mark the bits that each state represents.
The dashed arrows indicate how we transition from ine state to an other for the illustrated example.

Our key evaluation metric is the lifetime gain multiplied
by the rate, and we refer to this metric as aggregate gain. An
uncoded Flash has an aggregate gain defined equal to one, and
our goal is to develop schemes with aggregate gains greater
than one. Referring back to Figure 1, the areas of the
rectangles for each scheme equal their aggregate gains.

We note that schemes with equal aggregate gains may not
be equally desirable. For example, a scheme with lifetime
gain 3 and rate 1/2 may be more practically useful than a
scheme with lifetime gain 30 and rate 1/20, even though both
have the same aggregate gain of 3/2.

 Schemes Compared
The baseline to which we compare is uncoded Flash with

capacity C (raw capacity equals host-visible capacity for the
baseline) and lifetime L. As mentioned above, its aggregate
gain is defined to equal 1.

We also compare to a simple redundancy scheme in which
we use a factor of K times as much raw capacity to achieve
the same host-visible capacity C, for a rate of 1/K. With simple
redundancy, we use the first C of the raw capacity, without
coding, until it wears out. Then we use the next C of raw
capacity until it wears out, etc. Simple redundancy thus
provides a lifetime gain of K. The aggregate gain is thus
K/K=1, which is no better than the baseline.

We also evaluate the WOM code and the MFC codes
described in Section VI.

 Simulation
We simulate a single 4KB page of Flash as it is repeatedly

programmed by a stream of writes. We record the average
number of writes that can be performed to this page before it
needs to be erased, and this value is the lifetime gain. Because
the WOM codes and MFCs effectively scramble the
datawords in converting them to codewords, the results are
independent of the input data that is written. For simplicity,
we model the writes with pseudo-randomly generated data.

To fix the Flash page size, despite the codes having
different rates, we vary the size of the datawords to be written,
so that the codewords are all page-sized. That is, for a given
implementation with rate r we choose a dataword size, d, such
that d×r = 4KB. Varying the dataword size is a reasonable
approach because, even in modern uncoded Flash
implementations, the data are grouped in the appropriate size
before stored, so as to accommodate the possible difference in
sizes between a Flash hardware page and a page of virtual
memory.

VIII. EVALUATION
Using the methodology described in the previous section,

we determined the lifetime gain and aggregate gain for each
lifetime extension scheme. These results are summarized in
Table I, and they show that different implementations provide
a wide range of trade-offs between cost (rate) and benefit
(lifetime gain). In the rest of this section, we delve more
deeply into these high-level results.

 Fixed-Cost Comparisons
To highlight the differences between the implementations,

we fix the raw capacity at C, the capacity of the baseline
uncoded Flash, and show how each implementation provides
a different trade-off between host-visible capacity and lifetime
gain. We illustrate these trade-offs using figures similar to
Figure 1, in which the x-axis is lifetime gain and the y-axis is
host-visible capacity. The area of each rectangle represents
aggregate gain.

In Figure 11, we show the advantages of MFCs, with
respect to prior work, by comparing three MFCs with the
baseline, redundancy, and a WOM code. We make three
observations from this figure. First, MFCs (e.g., MFC-1/2)
can achieve greater aggregate gains than redundancy or
WOM. Second, an MFC can have the same aggregate gain as
a WOM code while providing a different trade-off of host-
visible capacity versus lifetime gain, as exemplified by MFC-
1/2-2BPC and the WOM code in the figure. Third, two
implementations that provide the same lifetime can provide
different host-visible capacities, depending on their aggregate
gain (WOM vs Redundancy-1/2)

In Figure 12, we compare all of the MFCs to each other.
We observe that they offer a wide range of trade-offs. MFC-
1/2-2BPC, MFC-2/3, MFC-3/4 and MFC-4/5 achieve a range
of lifetime gains from 4 to almost 7. MFC-1/2-1BPC stands
out from the rest of the MFCs with a remarkable lifetime gain
of 12.

 Cost to Achieve Extreme Lifetime
To highlight the importance of aggregate gain, we

consider a situation that demands extreme lifetime. We
assume an application that requires a lifetime gain of 12 and
we compare the cost (raw capacity) of different coding
schemes, in order achieve that requirement, for different host-
visible capacity goals.

Figure 13 summarizes these results for the WOM code,
MFC-4/5 and MFC-1/2 codes, and redundancy. The results
are normalized to a baseline of capacity C and lifetime L. We
observe that MFC-1/2, which has the largest aggregate gain,
provides the cheapest solution in comparison to the other
codes. From this graph, we conclude that higher aggregate
gains provide cheaper solutions (in terms of raw capacity).

TABLE I. RATE, LIFETIME AND AGGREGATE GAIN FOR ALL THE
IMPLEMENSTATION.

 Sensitivity Analysis: Lifetime vs Flash Page Size
 A code’s ability to postpone erasing depends somewhat

on the Flash page size. A page is no longer re-programmable
after a sequence of input data that cause some of the cells to
saturate. The number of re-programs before a cell becomes
saturated varies depending on the sequence of bits that we
want to store to that cell. Some input data sequences will cause
cells to saturate faster than others. As the page size increases,
the probability that such a “bad” sequence of inputs will occur
for any of our cells increases. Thus it increases the probability
of having saturated cells that will act as a bottleneck in our
lifetime gain.

In Figure 14, we plot lifetime gain as a function of page
size, for WOM and two MFCs. The results show that smaller
page sizes indeed provide better lifetime gains. However, we
cannot decide to have arbitrarily small Flash pages; there are
implementation reasons for having reasonably large (multi-
kilobyte) pages. For example, smaller pages require more

metadata to track the mapping between data and pages and
more complex garbage collection mechanisms.

 Analysis of MFC Objectives
MFCs choose codewords from cosets so as to achieve

three objectives: avoid writing to saturated cells, minimize the
number of cells that increment, and balance the increments
across the cells. In this section, we show how well MFCs
achieve the latter two objectives; the first objective is always
required. The results in this section help to explain the higher
level results presented earlier.

1) Minimize the Number of Cells that Increment
For each page update, we calculate the fraction of cells that

increment. We further distinguish these results based on how
many updates have already been done to this page since it was
last erased. We compare WOM and MFC-1/2-1BPC, so recall
that the WOM code achieves only 2 updates per page while
MFC-1/2-1BPC achieves 12 updates.

Figure 13. Different costs for a given lifetime and host visible capacity
goal.

Figure 14. Lifetime gain for different page sizes.

Figure 12. Fixed-cost comparisons of different MFCs. Figure 11. Fixed-cost comparisons of MFCs to prior work.

We show the results in Figure 15, in which the x-axis is
the page update number since its last erase, and the y-axis is
the average fraction of cells that increment. We also present,
on the far right, an average over all page update numbers. We
observe that MFC-1/2-1BPC has on average 17% of the v-
cells incremented in each update, whereas WOM has an
average of 75%. We also notice that in the case of MFC-1/2-
1BPC the first two updates have the fewest increments
(~14%). The reason we observe that is because, in the first two
updates, the majority of the v-cells are in level L0 and thus the
cost of balancing increments is minimal. In the later updates,
the number of increments is increased as MFCs also try to
balance increments.

2) Balance Increments Across Cells
We calculate the histogram of the levels that the cells reach

before the page gets erased. We present that result in Figure
16 for MFC-1/2-1BPC and the WOM code.

We observe that for the case of MFC-1/2-1BPC the
majority of the cells reach level L2 and, on average, only 0.5%
of the v-cells stay on level L0. That means that 99.95% of the
v-cells are programmed at least once while 88.5% of them

reach level L2 or L3. In an ideal case, all cells would have
reached level L3 before erase, but that is not achievable.

In the case of the WOM code, only 56% of the v-cells
reach levels L2 or L3 and 6% of them never get programmed.
Interestingly both implementations have about the same
number of v-cells in level L3 (~20%). That result shows that
saturated cells are a crucial bottleneck for re-writing codes and
indicates that 20% of the v-cells being saturated is an average
number that causes the whole page to be unable to be re-
programmed.

IX. RELATED WORK
There are two complementary approaches for extending

lifetime: postponing wearout and tolerating wearout. Our
MFCs, described in Section V, focus on postponing wearout
and can be combined with ECC, as shown in Section V.B, to
also tolerate wearout.

 Postponing Wearout
There are two techniques for postponing wearout: coding

and wear-leveling. Since we have already discussed coding,
we focus here on wear-leveling.

Intuitively, one would prefer not to wear out one or a
handful of cells out of the thousands of cells in a page, thus
rendering the entire page unusable. At a larger scale, one
would prefer not to wear out one or a handful of pages out of
the many pages in a block, thus reducing the effective size of
the block (leading to more frequent erasing of the block). It is
important that all cells across pages and blocks are wearing
out uniformly in order to ensure a good lifetime performance.

Many schemes have been developed for wear-leveling at
different granularities. The main focus on Flash memories is
on the block granularity [20, 21, 22]. By adding some extra
complexity in the FTL algorithm, blocks can have a more even
number of erases. Problems arise with blocks containing
“cold” and “hot” data, meaning data that are either rarely or
frequently modified respectively. These algorithms try to
detect such blocks and evenly distribute the erases by using
various techniques. This may increase the overall number of
block erasures.

Flash memory, in its current form, does not require page
wear leveling mechanisms as every page inside a block is only
programmed exactly one time before erased. However in the

Figure 15. Average number of increments.

Figure 16. Histogram of the v-cell levels before erasure.

case of a coding scheme, like MFCs, wear leveling at that
granularity may be beneficial. Research in that area [23] has
provided solutions for other memory types (i.e. PCM). The
main idea is to select the pages to program in such an order,
so that you evenly use all pages

 Tolerating Wearout
Tolerating wearout is an important aspect in Flash

memory for multiple reasons. The first reason is that some
Flash cells may start wearing out a lot faster than the indicated
lifetime due to various defects in the cells. Additionally some
cells may be manufactured with defects and thus be unable to
retain information from the start of the life of the product.
Such failures are commonly observed in Flash memories [13].

For these reasons common Flash memory
implementations provide some extra capacity that is used for
ECC [13]. Different ECCs have been proposed [24, 25, 26]
that explore tradeoffs between complexity, size and correction
capabilities.

Other ways of tolerating wearout, besides ECC, have been
also proposed. Schechter et al. [19] use a finite number of
redundant cells that are used to replace the initial defective
cells as well as the cells that wear out faster than expected.
Although their scheme is presented for PCM it can be used for
any non-volatile memory.

X. CONCLUSION
We conclude that Methuselah Flash Codes can provide

several benefits for Flash. We showed that MFCs achieve the
best aggregate gains in comparison to prior work, as well as
providing a range of trade-offs between rate and lifetime gain
for a given aggregate gain. Furthermore, we believe that the
compatibility of MFCs with ECC makes MFCs particularly
attractive.

We also conclude that, regardless of the coding scheme,
one must carefully consider the interface provided by a
realistic Flash. Rather than assuming idealized cells, we
highlighted the limitations of the current interface and found
a way to provide virtual cells that facilitate coding on real
Flash.

Another conclusion of this work is that there could be
benefits to co-designing Flash chips with code designers and
systems designers. Decisions like the mapping of cell levels
to bits and the sizes of the pages could be optimized for a given
purpose and maximize the benefits of re-writing codes like
MFCs. Eslami et al. [27] showed how such a co-design
process could be beneficial for phase change memory (PCM),
and it is possible that co-design for Flash offers similar
opportunities.

ACKNOWLEDGMENT
This material is based on work supported by the National

Science Foundation under grant CCF-142-1177.

REFERENCES

[1] A. Jiang, R. Mateescu, M. Schwartz and J. Bruck, "Rank Modulation

for Flash Memories," IEEE Transactions on Information Theory,
vol.55, no.6, pp.2659-2673, June 2009.

[2] W. Chua, K. Cai and Wang Ling Goh, "Efficient Two-Write WOM-
Codes for Non-Volatile Memories," IEEE Communications Letters,
vol.19, no.10, pp.1690-1693, Oct. 2015.

[3] A. Bhatia, M. Qin, A. Iyengar, B. Kurkoski and P. Siegel, "Lattice-
Based WOM Codes for Multilevel Flash Memories," IEEE Journal on
Selected Areas in Communications, vol.32, no.5, pp.933-945, May
2014.

[4] A. Jiang, V. Bohossian and J. Bruck, "Floating Codes for Joint
Information Storage in Write Asymmetric Memories," IEEE
International Symposium on Information Theory, pp.1166-1170, Jun.
2007.

[5] S. Kayser, E. Yaakobi, P. Siegel, A. Vardy and J. Wolf, "Multiple-
write WOM-codes," in 48th Annual Allerton Conference on
Communication, Control, and Computing, pp.1062-1068, Oct. 2010.

[6] A. Jacobvitz, R. Calderbank and D. Sorin, "Writing Cosets of a
Convolutional Code to Increase the Lifetime of Flash Memory," in
50th Annual Allerton Conference Communication, Control, and
Computing, pp. 308–318, 2012.

[7] B. Kurkoski, "Rewriting Flash Memories and Dirty-paper Coding,"
IEEE International Conference on Communications, pp.4353-4357,
Jun. 2013.

[8] G. J. Forney, "Coset Codes. I. Introduction and Geometrical
Classification," IEEE Transactions on Information Theory, vol.34,
no.5, pp.1123-1151, Sep. 1988.

[9] G. J. Forney, "Coset Codes. II. Binary Lattices and Related Codes,"
IEEE Transactions on Information Theory, vol.34, no.5, pp.1152-
1187, Sep 1988.

[10] R. Hasbun and F. Janecek, “Multiple Writes Per a Single Erase for a
Nonvolatile Memory,” U.S. Patent No. 5,936,884. 10 Aug. 1999.

[11] V. Mohan, T. Siddiqua, S. Gurumurthi, and M. R. Stan, “How I
Learned to Stop Worrying and Love Flash Endurance,” in Proceedings
of the 2nd USENIX Conference on Hot topics in Storage and File
Systems, pp. 3–3, 2010.

[12] Y. Cai, O. Multu, E. F. Haratsch, K. Mai, "Program Interference in
MLC NAND Flash Memory: Characterization, Modeling, and
Mitigation," IEEE 31st International Conference on Computer Design
(ICCD), pp.123-130, 2013.

[13] L. Grupp, A. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P. Siegel
and J. Wolf, "Characterizing Flash Memory: Anomalies,
Observations, and Applications," in 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, pp.24-33, Dec. 2009.

[14] L. A. Lastras-Montaño, M. Franceschini, T. Mittelholzer, J. Karidis,
and M. Wegman, “On the Lifetime of Multilevel Memories,” in
Proceedings of the 2009 IEEE International Symposium on
Information Theory, vol. 2, pp. 1224–1228, 2009.

[15] R. L. Rivest and A. Shamir, "How to Reuse a "Write-once" Memory,"
Information and Control, vol.55, no.1, pp.1-19, 1982.

[16] E. Yaakobi, S. Kayser, P. Siegel, A. Vardy and J. Wolf, "Efficient
Two-write WOM-codes," in Information Theory Workshop, pp.1-5,
2010.

[17] E. Yaakobi, S. Kayser, P. Siegel, A. Vardy and J. Wolf, "Codes for
Write-Once Memories," IEEE Transactions on Information Theory,
vol.58, no.9, pp.5985-5999, Sept. 2012.

[18] S. Lin and D. J. Costello, Jr, Error Control Coding, 2nd ed. Pearson
Prentice Hall, 2004.

[19] S. Schechter, G. H. Loh, K. Straus and D. Burger, "Use ECP, not ECC,
for Hard Failures in Resistive Memories," in Proceedings of the 37th
Annual International Symposium on Computer Architecture, pp.141-
152, 2010.

[20] L.-P. Chang, "On Efficient Wear Leveling for Large-scale Flash-
memory Storage Systems," in Proceedings of the 2007 ACM
Symposium on Applied Computing (SAC '07), pp.1126-1130, ACM,
2007.

[21] Y.-H. Chang, J.-W. Hsieh and T.-W. Kuo, "Endurance Enhancement
of Flash-memory Storage Systems: An Efficient Static Wear Leveling
Design," in Proceedings of the 44th Annual Design Automation
Conference, pp.212-217, Jun 2007.

[22] L.-P. Chang and C.-D. Du, "Design and Implementation of an
Efficient Wear-leveling Algorithm for Solid-state-disk
Microcontrollers,"ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 15, no. 1, pp.1-36, 2009.

[23] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras
and B. Abali, "Enhancing Lifetime and Security of PCM-based Main
Memory with Start-gap Wear Leveling," in Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchitecture,
pp.14-23, 2009.

[24] G. Dong, N. Xie and Tong Zhang, "On the Use of Soft-Decision Error-
Correction Codes in NAND Flash Memory," IEEE Transactions on
Circuits and Systems I: Regular Papers, vol.58, no.2, pp.429-439, Feb.
2011.

[25] B. Chen, X. Zhang and Zhongfeng Wang, "Error Correction for Multi-
level NAND Flash Memory Using Reed-Solomon Codes," IEEE
Workshop on Signal Processing Systems, pp.94-99, Oct. 2008.

[26] S. Gregori, A. Cabrini, O. Khouri and G. Torelli, "On-chip Error
Correcting Techniques for New-generation Flash Memories," in
Proceedings of the IEEE , vol.91, no.4, pp.602-616, April 2003.

[27] A. Eslami, A. Velasco, A. Vahid, G. Mappouras, R. Calderbank and
D. J. Sorin, "Writing without Disturb on Phase Change Memories by
Integrating Coding and Layout Design," in Proceedings of the 2015
International Symposium on Memory Systems, ACM, pp.71-77,
2015.

