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Abstract—We establish the capacity region of the two-user
finite field X-Channels with delayed channel state information
at the transmitters. We consider the most general case in which
each transmitter has a common message for both receivers and
a private message for each one of them. We derive a new
set of outer-bounds for this problem that rely on an extremal
entropy inequality. This inequality quantifies the ability of each
transmitter in favoring one receiver over the other in terms
of delivered entropy when both receivers must obtain some
baseline entropy. We also propose a transmission strategy that
harvests the delayed channel state information to combine and to
repackage previously communicated signals in order to deliver
them efficiently. We show that this transmission strategy matches
the outer-bounds.

Index Terms—X-Channel, finite-field model, capacity region,
interference channel, delayed CSIT.

I. INTRODUCTION

Alongside the two-user interference channel [1]–[5], the
two-user X-Channel is a canonical example to study the
impact of interference in communication networks. In the X-
Channel, each transmitter has a common message intended
for both receivers as well as a private message intended
for each receiver. This problem has been widely studied in
the literature and several interference management techniques
have been proposed [6]–[8]. For instance under instantaneous
channel state information (CSI) model, it was shown in [7]
that interference alignment can provide a gain over baseline
techniques (e.g., orthogonalization). This gain is expressed
in terms of degrees-of-freedom (DoF) which captures the
asymptotic behavior of the network normalized by the capacity
of the point-to-point channel when power tends to infinity.

Attaining instantaneous channel state information at the
transmitters (CSIT) in many real-world scenarios may not
be feasible. In such cases, a more realistic model is the
delayed CSIT in which by the time the CSI arrives at the
transmitters, the channel has already changed to a new state.
Under the delayed CSIT model, authors in [9] developed a
scheme that achieves 6/5 DoF. Later, it was shown that if we
limit ourselves to linear encoding functions, then 6/5 is indeed
the optimal DoF [10]. These results provide valuable insight
into the behavior of X-Channels. However, in information
and communication theory, the ultimate goal is to understand
the behavior of wireless networks for any signal-to-noise
ratio (SNR). In other words, we are interested in capacity
results rather than DoF-type results. Moreover, while one

might argue that most practical communication protocols are
linear, limiting the encoding functions to be linear removes
the majority of potential encoding functions and from an
information-theoretic perspective, this is not desirable. Finally,
authors in [9] and [10] study a subset of X-Channels in which
transmitters only have private messages for the receivers and
the issue of common messages in X-Channels is not addressed.

In this work we address these issues by deriving the capacity
region of X-Channels with delayed CSIT and common mes-
sages under a finite field fading model introduced in [11], [12].
To derive the outer-bounds, we rely on an extremal entropy
inequality to capture both the impact of delayed CSIT and
the issue of delivering the common messages. This inequality
quantifies the ability of a transmitter to favor one receiver
over the other in terms of provided entropy when: (1) both
receivers need to obtain some common entropy, and (2) the
transmitter has access to the delayed channel state information.
The extremal entropy inequality in this work extends a similar
inequality in [11] to capture the impact of common messages
on the capacity region of X-Channels.

To achieve the outer-bounds, we treat the X-Channel as a
combination of a number of well-known problems for which
the capacity region is known. By adjusting different rates for
the X-Channel, we can recover several other problems such as
the interference channel, the multicast channel, the broadcast
channel, and the multiple-access channel. We demonstrate how
to utilize the capacity-achieving strategies of such problems
in a systematic way in order to achieve the capacity region
of the X-Channel. We show that, however, if we treat the
X-Channel as a number of disjoint sub-problems, we will
not achieve the capacity, and in some regimes we need to
interleave the capacity-achieving strategies of different sub-
problems and execute them simultaneously.

The rest of the paper is organized as follows. In Section II
we formulate the problem. In Section III we present our
main results and provide some insights. Sections IV and V
are dedicated to the proof of the main results. Section VI
concludes the paper.

II. PROBLEM FORMULATION

We consider the two-user Binary Fading X-Channel as
illustrated in Fig. 1 with two transmitters and two receivers. In
the binary fading model, the channel gain from transmitter Txj
to receiver Rxi at time t is denoted by Gij [t], i, j ∈ {1, 2}.
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Fig. 1. Two-user Binary Fading X-Channel. All signals and the channel gains
are in the binary field.

The channel gains are either 0 or 1 (i.e. Gij [t] ∈ {0, 1}),
and they are distributed as independent Bernoulli random
variables (independent across time and space). We consider
the homogeneous setting in which

Gij [t]
d∼ B(p), i, j = 1, 2, (1)

for 0 ≤ p ≤ 1, and we define q
4
= 1− p.

At each time t, the transmit signal of Txj is denoted by
Xj [t] ∈ {0, 1}, and the received signal at Rxi is given by

Yi[t] = Gii[t]Xi[t]⊕Gīi[t]Xī[t], i = 1, 2, (2)

where the summation is in F2, and ī = 3− i.
We define the channel state information (CSI) at time t to

be the quadruple

G[t]
4
= {G11[t], G12[t], G21[t], G22[t]} . (3)

In this work, we consider the delayed CSIT model in which
at time t each transmitter has the knowledge of the channel
state information up to the previous time instant (i.e. Gt−1)
and the distribution from which the channel gains are drawn
(i.e. B(p)), t = 1, 2, . . . , n. Since receivers only decode the
messages at the end of the communication block, without loss
of generality, we assume that the receivers have instantaneous
knowledge of the CSI. We consider the scenario in which Txj ,
j = 1, 2, wishes to reliably communicate

1) message W0j ∈ {1, 2, . . . , 2nR0j} to both receivers,
2) message W1j ∈ {1, 2, . . . , 2nR1j} to Rx1,
3) and message W2j ∈ {1, 2, . . . , 2nR2j} to Rx2,

during n uses of the channel. We assume that the messages and
the channel gains are mutually independent and the messages
are chosen uniformly at random.

For transmitter Txj , let messages W0j ,W1j , and W2j be
encoded as Xn

j using the encoding function fj(.), which
depends on the available CSI at Txj , see Fig. 1. Receiver
Rxi is interested in decoding W0 and Wi given by

W0
4
= (W01,W02) , Wi

4
= (Wi1,Wi2) , (4)

and it will decode the messages using the decoding function
(Ŵ0, Ŵi)

4
= gi(Y

n
i , G

n). An error occurs when
(
Ŵ0, Ŵi

)
6=

(W0,Wi). The average probability of decoding error is given
by

λi,n
4
= E[P [

(
Ŵ0, Ŵi

)
6= (W0,Wi)]], i = 1, 2, (5)

where the expectation is taken with respect to the random
choice of messages.

We define

R0
4
= R01 +R02, R1

4
= R11 +R12, R2

4
= R21 +R22. (6)

A rate tuple (R0, R1, R2) is said to be achievable, if there
exists encoding and decoding functions at the transmitters
and the receivers respectively, such that the decoding error
probabilities λ1,n, λ2,n go to zero as n goes to infinity. The
capacity region is the closure of all achievable rate tuples.

III. MAIN RESULTS

In this section, we present the capacity region of the
two-user Binary Fading X-Channel under the delayed CSIT
assumption, and we provide some technical insights and
interpretations of the main results.

Theorem 1. The capacity region, C, of the two-user Binary
Fading X-Channel with private and common messages under
delayed CSIT assumption as described in Section II is the set
of all rates satisfying:{

BC Bounds : 0 ≤ Rij + β
(
Rīj +R0j

)
≤ βp,

XC Bounds : Ri + β (Rī +R0) ≤ β
(
1− q2

)
,

(7)

for i, j ∈ {1, 2}, R0, R1, R2 defined in (6), and

β = 2− p. (8)

The capacity region is described by two sets of outer-
bounds. The first set is referred to as the Broadcast Channel
(BC) bounds. These bounds describe the capacity region of
the broadcast channel formed by one of the transmitters and
the two receivers assuming the other transmitter is eliminated.
These bounds can be thought of as the generalization of the
results in [13]–[15] for the two-user case to include common
messages. The second set is referred to as the X-Channel (XC)
bounds which cannot be obtained from the BC bounds.

The derivation of the outer-bounds relies on an extremal
entropy inequality that quantifies the ability of each transmitter
in favoring one receiver over the other in terms of the
available entropy subject to two constraints: (1) both receivers
need to obtain a baseline entropy (to capture the common
messages), and (2) transmitters have access to the delayed CSI.
This inequality characterizes the limit to which the unwanted
subspace at one receiver can be scaled down while the desired
subspace at the other receiver is maximized. We use this
inequality and a genie-aided argument to derive the new outer-
bounds.

The two-user X-Channel can be thought of as a general-
ization and a combination of several well-known problems.
For instance, if R11 and R12 are the only non-zero rates,
then the problem is equivalent to the multiple-access channel
formed at Rx1, and if R12 and R22 are the only non-zero



rates, then the problem is equivalent to the broadcast channel
formed by Tx2. We demonstrate how to utilize the capacity-
achieving strategies of other problems, such as the Interference
Channel and the Multicast Channel, in a systematic way in
order to achieve the capacity region of the X-Channel. We
show that, however, if we treat the X-Channel as a number
of disjoint sub-problems, we will not achieve the capacity in
some regimes. In fact, in such regimes, we need to interleave
the capacity-achieving strategies of different sub-problems and
execute them simultaneously.
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Fig. 2. The sum-capacity of the X-Channel vs. that of the Interference
Channel. To have a fair comparison, in the X-Channel we set R0 = 0.

An important difference between the X-Channel and the
Interference Channel is the fact that in the latter scenario, the
individual rates are limited by the capacity of a point-to-point
channel, i,e, p. As a result, for the Interference Channel we
have [11]:

sup (R1 +R2) = min

{
2p,

2β
(
1− q2

)
1 + β

}
. (9)

However, in the X-Channel no such limitation exists, and we
have

sup (R1 +R2) =
2β
{(

1− q2
)
−R0

}
1 + β

. (10)

The difference is depicted in Fig. 2 for R0 = 0. This means
that if we naively try to use the capacity-achieving strategies
of the sub-problems, we cannot achieve the capacity region of
the X-Channel. The key idea to overcome this challenge is to
interleave different strategies and execute them simultaneously.
For more details, we refer the reader to [16].

IV. CONVERSE PROOF OF THEOREM 1

In this section we provide the converse proof of Theorem 1.
The proof of the BC bounds has some similarities to that of
the XC bounds and are presented in [16].
XC Bounds: To derive these bounds, we have

n (R1 + β (R2 +R0)) = H (W1) + β {H (W2) +H (W0)}
(a)
= H (W1|W0,W2) + β {H (W2) +H (W0|W2)}

(b)
= I (W1;Y n

1 |W0,W2, G
n) + β {I (W2;Y n

2 |Gn)

+I (W0;Y n
2 |W2, G

n)}+ nεn

= H (Y n
1 |W0,W2, G

n)−H (Y n
1 |W0,W1,W2, G

n)︸ ︷︷ ︸
= 0

+ βH (Y n
2 |Gn)− β {H (Y n

2 |W2, G
n)

−I (W0;Y n
2 |W2, G

n)}+ nεn
(d)

≤ βH (Y n
2 |Gn) + nεn

(e)

≤ nβ(1− q2) + nεn. (11)

where εn → 0 as n→∞; (a) follows from the independence
of messages; (b) follows from Fano’s inequality and the fact
that messages are independent of channel realizations; (d)
follows from Claim 1 below; (e) holds since

H (Y n
2 |Gn) ≤

n∑
t=1

H (Y2[t]|Gn) ≤ n(1− q2). (12)

Dividing both sides by n and letting n→∞, we get

R1 + β (R2 +R0) ≤ β(1− q2). (13)

Similarly, we can obtain the other XC bound.

Claim 1. For the two-user Binary Fading X-Channel with
private and common messages under delayed CSIT assumption
as described in Section II, we have

H (Y n
1 |W0,W2, G

n) (14)
− β {H (Y n

2 |W2, G
n)− I (W0;Y n

2 |W2, G
n)} ≤ 0.

Proof. We first note that

H (Y n
2 |W0,W2, G

n) (15)
= H (Y n

2 |W2, G
n)− I (W0;Y n

2 |W2, G
n) .

Thus, proving (14) is equivalent to proving

H (Y n
1 |W0,W2, G

n)− βH (Y n
2 |W0,W2, G

n) ≤ 0. (16)

We have

H (Y n
2 |W0,W2, G

n) (17)

(a)
=

n∑
t=1

H
(
Y2[t]|Y t−1

2 ,W0,W2, G
t
)

(b)
=

n∑
t=1

pH
(
X1[t]|Y t−1

2 ,W0,W2, G2[t] = 1, G1[t], Gt−1
)

(c)
=

n∑
t=1

pH
(
X1[t]|Y t−1

2 ,W0,W2, G
t
)

(d)

≥
n∑

t=1

pH
(
X1[t]|Y t−1

1 , Y t−1
2 ,W0,W2, G

t
)

(e)
=

n∑
t=1

1

β
H
(
Y1[t], Y2[t]|Y t−1

1 , Y t−1
2 ,W0,W2, G

t
)

(f)
=

n∑
t=1

1

β
H
(
Y1[t], Y2[t]|Y t−1

1 , Y t−1
2 ,W0,W2, G

n
)

=
1

β
H (Y n

1 , Y
n
2 |W0,W2, G

n)
(g)

≥ 1

β
H (Y n

1 |W0,W2, G
n) ,



where (a) follows from the fact that all signals at time
t are independent of future channel realizations; (b) holds
since Pr (G2[t] = 1) = p; (c) is true since transmit signal
X1[t] is independent of the channel realization at time t;
(d) holds since conditioning reduces entropy; (e) holds since
Pr (G1[t] = G2[t] = 0) = q2 and the definition of β; (f)
is true since all signals at time t are independent of future
channel realizations; (g) follows from the chain rule and the
non-negativity of the entropy function for discrete random
variables.

This completes the converse proof of Theorem 1, and in the
following section we present the achievability proof.

V. ACHIEVABILITY PROOF OF THEOREM 1

In the previous section we developed a set of new outer-
bounds for this problem. In this section we show that a
careful combination of the capacity-achieving strategies for
other known known problems will achieve the capacity region
of the X-Channel. However, we show that if we simply
treat the X-Channel as a number of disjoint sub-problems,
we will not achieve the capacity, and in some regimes we
need to interleave the capacity-achieving strategies of different
sub-problems and execute them simultaneously. This issue is
discussed later in this section. For more details, we refer the
reader to [16].

To describe the key idea in our transmission strategy, we
present two examples. The general scheme is presented in [16].
Example 1: Symmetric Sum-Rate: Suppose for p = 0.5, we
wish to achieve

R01 = R02 = 1/8,

R11 = R12 = R21 = R22 = 0.15. (18)

To achieve the capacity region, we treat the X-Channel as
three separate problems at different times:
• For the first third of the communication block, we

treat the X-Channel as a two-user multicast channel as
depicted in Fig. 3(a) in which each transmitter has a
message for both receivers. For the two-user multicast
channel with fading parameter 1/2, the capacity region
matches that of the multiple-access channel formed at
each receiver [11] and depicted in Fig. 3(a) as well.

• For the second third of the communication block, we
treat the X-Channel as a two-user interference channel
in which Txj wishes to communicated with Rxj , see
Fig. 3(b). The capacity region of this problem is given
in [11] and depicted in Fig. 3(b).

• During the final third of the communication block, we
treat the X-Channel as a two-user interference channel
with swapped IDs in which Txj wishes to communicated
with Rxj̄ , see Fig. 3(c). In the homogeneous setting of
this work, the capacity region of this interference channel
with swapped IDs matches that of the previous case and
is depicted in Fig. 3(c).

Achievable Rates: We note that as the communication block
length, n, goes to infinity, so do the communication block
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Fig. 3. (a) The two-user multicast channel and its capacity region, the
capacity can be achieved without using the delayed CSI; (b) The two-user
binary fading interference channel and its capacity region; (c) The two-user
binary fading interference channel with swapped IDs and its capacity region.

lengths for each sub-problem. Thus, during the first third of
the communication block, we can achieve symmetric common
rates arbitrary close to (3/8, 3/8). Normalizing to the total
communication block, we achieve (R01, R02) = (1/8, 1/8)
which matches the requirements of (18). From [11] we know
that for the two-user binary fading interference channel with
delayed CSIT and p = 1/2, we can achieve symmetric rates
of (0.45, 0.45). Normalizing to the total communication block,
we achieve (R11, R22) = (0.15, 0.15) which matches the
requirements of (18). Finally, during the final third of the
communication block we treat the problem as a two-user in-
terference channel with swapped IDs in which we can achieve
symmetric rates of (0.45, 0.45). Normalizing to the total
communication block, we achieve (R21, R12) = (0.15, 0.15)
which again matches the requirements of (18). Thus, with
splitting up the X-Channel into a combination of three known
sub-problems, we can achieve the capacity region described
in Theorem 1.
Example 2: Unequal Rates: In the previous subsection we
focused on a symmetric setting. Here, we discuss a scenario
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in which transmitters have different types of messages with
different rates for each receiver. More precisely, we consider
p = 0.5, and

R01 = 1/2, R02 = 0,

R11 = R21 = 0, R12 = R22 = 0.15, (19)

In this case, we can think of the X-Channel in this case as
two sub-problems that coexist at the same time as described
below.
• The Binary Fading Broadcast Channel from Tx1 in which

a single message is intended for both receivers. For this
problem, the capacity can be achieved using a point-to-
point erasure code of rate 1/2.

• The Binary Fading Broadcast Channel from Tx2 as in
Fig. 4 with delayed CSIT in which the transmitter has a
private message for each receiver. For this problem, the
capacity region is given in [13], [14] and depicted Fig. 4.
As described below, in order to be able to decode the
messages in the presence of the Broadcast Channel from
Tx1, we first encode W12 and W22 using point-to-point
erasure codes of rate 1/2, and treat the resulting codes as
the input messages to the Broadcast Channel of Fig. 4.

Achievable Rates: At each receiver the received signal from
Tx2 is corrupted (erased) half of times by the signal from
Tx1. As a result, when we implement the capacity-achieving
strategy of [13], [14], we only deliver half of the bits intended
for each receiver. However, since we first encode W12 and
W22 using point-to-point erasure codes of rate 1/2, obtaining
half of the bits is sufficient for reliable decoding of W12 and
W22. Thus, we achieve

(R12, R22) =
1

2
(0.3, 0.3) = (0.15, 0.15) , (20)

which again matches the requirements of (19). At the end of
the communication block, receivers decode W12 and W22, and
remove the contribution of Tx2 from their received signals. Af-
ter removing the contribution of Xn

2 , the problem is identical
to the Broadcast Channel from Tx1 as in Fig. 4(a) for which
we can achieve a common rate R02 of 1/2.

VI. CONCLUSION

We established the capacity region of finite-field fading
X-Channels with common messages and delayed CSIT. We

presented a new set of outer-bounds for this problem that
relied on an extremal entropy inequality developed specifically
for this problem. We showed how the outer-bounds can be
achieved by treating the X-Channel as a combination of a
number of well-known problems.

One future direction is to extend our results to the multi-
layer finite-field fading setting similar to [17] or [18], and
then derive the capacity region of the Gaussian X-Channels
to within a constant number of bits. Another direction is to
extend our results to multi-hop networks similar to [19].
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