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Abstract—In multi-user wireless packet networks interference
is the throughput bottleneck. Users become aware of the in-
terference pattern via feedback and use this information for
contention resolution and for packet retransmission. We consider
networks with spatially correlated wireless links, and we develop
an opportunistic automatic repeat request function for these
networks. We prove the optimality of our protocol using an
extremal rank-ratio inequality for spatially correlated channels.

Index Terms—Wireless packet networks, interference manage-
ment, spatial correlation, network throughput, ARQ.

I. INTRODUCTION

Interference is the main bottleneck in modern communi-

cation networks. In the context of wireless packet networks,

information about the interference pattern arrives only after

packets are communicated and is therefore delayed. There

is a large body of work on wireless networks with delayed

interference and channel knowledge (e.g., [1]–[7]). In most

cases wireless links are assumed to be independently and

identically distributed across time and space. However, such

assumptions are not realistic. Temporal correlation allows

transmitters to estimate what will happen next, and to adjust

their transmission strategies accordingly [8]–[10]. There are

also some results that develop transmission strategies for

wireless networks with spatially correlated links [11]–[14].

However, these results do not provide any capacity results for

spatially correlated networks. Recently in [15], we presented

the capacity region of a class of two-user interference channels

with spatial correlation at the transmitters.

In this work we consider a wireless packet network with two

transmitter-receiver pairs and with spatially correlated links.

We capture spatial correlation by introducing a correlation

coefficient between the channels connected to each user. We

develop an Automatic Repeat reQuest (ARQ) function for this

problem and prove its optimality. In essence, this work extends

the results of [15] to include correlation at all wireless nodes.

We adopt the physical layer model for wireless packet

networks introduced in [16] and depicted in Fig. 1. In this

model, depending on the aggregate interference from other

users, there will be four channel states at each receiver: (1)
the desired signal is received at a power level such that it can

be decoded; (2) the interfering signal is received at a power

level such that it can be decoded; (3) the desired signal and the

interfering signal are received at similar power levels and the

receiver obtains a linear combination of them; (4) no useful

signal is obtained. These cases are modeled using a shadowing
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Fig. 1. At time t, Tx1 and Tx2 communicate data packets �a and�b respectively
and αji(t)’s are the shadowing coefficients.

coefficient for each wireless link, and the transmitters learn

these shadowing coefficients with some delay. We assume

that there is a certain spatial correlation pattern between the

shadowing coefficients and that this knowledge is available

to wireless nodes as side information. We show that spatial

correlation can greatly affect the throughput region of wireless

packet networks: spatial correlation on the one hand can

take away any potential gain of delayed interference pattern

knowledge and on the other hand, it can help us perform

as well as having instantaneous knowledge of interference

pattern. We discuss this dichotomy in Section III.

To derive the outer-bounds that capture spatial correlation,

we develop an extremal rank-ratio inequality in Section V.

We then use a genie-aided argument and apply our extremal

rank-ratio inequality to obtain the outer-bounds. We observe

that spatial correlation at the transmitter side defines the shape

of the capacity region while spatial correlation at the receiver

side determines its size.

To achieve the outer-bounds, we develop an ARQ function

in Section IV that updates the status of each transmitted packet

into three queues: 1) delivered packets, 2) packets that arrived

(and potentially interfered) at both receivers, and 3) packets

that arrived (and potentially interfered) at the unintended

receivers. The ARQ function then combines and retransmits

the packets in the latter two queues taking into account the

spatial correlation structure of the network.

II. PROBLEM FORMULATION

We quantify the impact of spatial correlation on the through-

put region of wireless packet networks. To do so, we consider a

wireless packet network in which multiple transmitter-receiver

pairs wish to communicate with each other and within this

setup, we focus on two nearby transmitter-receiver pairs,

namely Tx1-Rx1 and Tx2-Rx2.

We adopt the abstraction of wireless packet networks intro-

duced in [16]. In this model, transmitter Tx1 has m1 packets

(data frames) with corresponding physical layer codewords of



length τ denoted by �a1,�a2, . . . ,�am1
, and wishes to commu-

nicate them to receiver Rx1. Similarly, transmitter Tx2 has

m2 packets denoted by codewords �b1,�b2, . . . ,�bm2 for receiver

Rx2. It is assumed that the mapping from the packets to their

corresponding physical layer codewords is fixed (e.g., LDPC

codes, Reed-Solomon codes, etc) and if a codeword is received

with a signal-to-interference-plus-noise ratio of above some

threshold, γ, the receiver is able to decode its packet.

Suppose Tx1 and Tx2 communicate data packets �a and �b
respectively at time t. Then, Rx1 obtains:

�y1(t) = g11(t)�a+ g12(t)�b+ �z1(t), (1)

where g11(t) and g12(t) are real-valued channel gains and

�z1(t) is the ambient interference plus noise. The signal-to-

interference-plus-noise ratio of link ji at Rxj , i, j ∈ {1, 2}, is

defined as:

SINRji
�
= 10 log10

(
P |gji|2

E
[
�z�j (t)�zj(t)

]
+ P |gjī|2

)
, (2)

where ī
�
= 3−i and P is the average transmit power constraint.

Furthermore, we define the signal-to-noise ratio (SNR) of link

ji at Rxj , i, j ∈ {1, 2}, as:

SNRji
�
= 10 log10

(
P |gji|2

E
[
�z�j (t)�zj(t)

]) . (3)

Based on the SINR and the SNR values of different links

at each time t, we have one of the following states at any of

the receivers, say Rx1:

• State 1 (SINR11 ≥ γ): In this state the SINR of the

desired packet (i.e. �a) at Rx1 is above the threshold and

Rx1 can decode the corresponding packet.

• State 2 (SINR12 ≥ γ): Similar to State 1, but in this

case the SINR of the interfering packet (i.e. �b) at Rx1 is

above the threshold and Rx1 (the unintended receiver in

this case) can decode the packet.

• State 3 (SINR1i < γ but SNR1i ≥ γ for i = 1, 2):

This state corresponds to the scenario in which the SINRs

of both packets are below the threshold at Rx1 but the

individual links are strong. Thus, receiver Rx1 obtains a

linear combination of the packets.

• State 4: In any other scenario, Rx1 discards its signal.

The following abstraction of the physical layer at Rx1
captures these four different states:

�y1(t) = α11(t)g11(t)�a+ α12(t)g12(t)�b, (4)

where the shadowing coefficients α11(t) and α12(t) are in the

binary field. Similarly, α21(t) and α22(t) can be used for Rx2.

The channel state at time t is represented by

α(t) = {α11(t), α12(t), α21(t), α22(t)} . (5)

We assume that αji(t)’s follow a Bernoulli distribution B (p)
and that at time t, each transmitter knows αt−1 = (α(�))

t−1
�=1

and each receiver has access to αt = (α(�))
t
�=1. We note that

transmitters do not learn the real-valued channel gains.

In general, αji(t)’s are correlated across time and space.

Since we study the impact of spatial correlation, we assume

that αji(t)’s are distributed independently across time and are

drawn from the same joint distribution at each time. To capture

spatial correlation, we assume a symmetric setting in which the

shadowing coefficients corresponding to the links connected to

transmitter Txi have a correlation coefficient ρTx, i.e.

ρTx =
cov (α1i(t), α2i(t))

σα1i(t)σα2i(t)
, i = 1, 2. (6)

and similarly, the links connected to receiver Rxj have a

correlation coefficient ρRx.
We note that fixing −1 ≤ ρTx, ρRx ≤ 1 imposes a feasible

set on p. More precisely, we have p ∈ SρTx
∩SρRx

where SρTx

(and similarly SρRx
) is defined below.

SρTx

�
=

[
max

{
0,

−ρTx
1− ρTx

}
,min

{
1,

1

1− ρTx

}]
, (7)

and we set SρTx=1,SρRx=1
�
= [0, 1]. The derivation of SρTx

and

SρRx
is provided in [17]. We also define:

pTxk�
�
= Pr (α11(t) = k, α21(t) = �) ,

pRxk�
�
= Pr (α11(t) = k, α12(t) = �) , k, � ∈ {0, 1}, (8)

As mentioned above, Txi wishes to reliably communicate

mi packets to Rxi during n uses of the channel, i = 1, 2. We

assume that the packets and the channel gains are mutually

independent. Receiver Rxi is only interested in packets from

Txi, and it will recover (decode) them using the received signal

�yni , the knowledge of the channel state information, and the

knowledge of ρTx and ρRx.
At each time instant, transmitter i creates a linear combi-

nation of the mi packets it has for receiver i by choosing

a precoding vector �vi(t) ∈ R
1×mi , i = 1, 2. Transmit

signals at time t at Tx1 and Tx2 are given by �v1(t)A and

�v2(t)B respectively, where A = [�a1,�a2, . . . ,�am1
]
�

, and

B =
[
�b1,�b2, . . . ,�bm2

]�
. We impose ||�v1(t)||, ||�v2(t)|| ≤ 1

to satisfy the power constraint at the transmitters where ||.||
represents the Euclidean norm. Since transmitters learn α(t)
with unit delay, �vi(t) is only a function of αt−1 and the

correlation coefficients ρTx and ρRx. The received signal of

receiver i at time t, can be represented by

�yi(t) = αi1(t)gi1(t)�v1(t)A+ αi2(t)gi2(t)�v2(t)B. (9)

We denote the overall precoding matrix of transmitter i by

Vn
i ∈ R

n×mi , where the tth row of Vn
i is �vi(t). Furthermore,

let Gn
ij be an n × n diagonal matrix where the tth diagonal

element is αij(t)gij(t), i, j = 1, 2. Thus, we can write the

output at receiver i as

�yni = Gn
i1V

n
1A+Gn

i2V
n
2B, i = 1, 2. (10)

We denote the interference subspace at receiver i by Ii and

is given by

Ii = colspan (GīiVī) , i = 1, 2, (11)
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Fig. 2. Throughput region for p = 0.5: (a) ρRx = 0, and ρTx ∈ {−1, 0, 1},
and (b) ρTx = 0, and ρRx ∈ {−1/3, 0, 1}.

where colspan(.) of a matrix represents the sub-space spanned

by its column vectors, and let Ic
i denote the subspace or-

thogonal to Ii. Then, in order for decoding to be successful

at receiver i, it should be able to create mi linearly inde-

pendent equations that are solely in terms of its intended

packets. Mathematically speaking, this means that the image

of colspan (Gn
iiV

n
i ) on Ic

i should have the same dimension

as colspan (Vn
i ) itself. In other words, we require

dim
(
ProjIc

i
colspan (Gn

iiV
n
i )
)

= dim (colspan (Vn
i )) = mi, i = 1, 2. (12)

We say that a throughput tuple of (R1, R2) =
(m1/n,m2/n) is achievable, if there exists a choice of Vn

1

and Vn
2 , such that (12) is satisfied for i = 1, 2 with probability

1. The throughput region, T (p, ρTx, ρRx), is the closure of all

achievable throughput tuples (R1, R2).

III. STATEMENT OF THE MAIN RESULTS

The following theorem establishes the throughput region.

Theorem 1. For the spatially correlated wireless packet
networks with two transmitter-receiver pairs as described in
Section II and for p ∈ SρTx

∩ SρRx
, we have

T (p, ρTx, ρRx) = (13){
0 ≤ Ri ≤ p, i = 1, 2,

Ri + β (p, ρTx)Rī ≤ β (p, ρTx)
(
1− pRx00

)
, i = 1, 2.

}

where

β (p, ρTx) = 2− ρTx − p (1− ρTx) ,

pRx00 = 1 + p2 + p(1− p)ρRx − 2p. (14)

The converse proof of Theorem 1 relies on an extremal

rank-ratio inequality for correlated channels that we present

in Section V. The slope of the outer-bounds (i.e. β (p, ρTx))
is determined by this inequality and depends on spatial cor-

relation at the transmitters. Using the extremal inequality and

genie-aided arguments, we obtain the outer-bound.

The communication protocol that achieves the capacity has

multiple phases of communications and after each phase,

transmitters use the delayed interference pattern knowledge to

update the status of the previously communicated packets. The

goal is to retransmit linear combination of packets in a way to

help receivers decode their corresponding packets faster than

the scenario in which individual packets are retransmitted.

Before presenting the proofs, we provide further interpreta-

tion of Theorem 1. As shown in Fig. 2(a), for p = 0.5 and fully

correlated links at each transmitter, C (0.5, 1, 0) coincides with

the one where transmitters do not have any access to interfer-

ence pattern [16]. On the other hand, C (0.5,−1, 0) includes

(R1, R2) = (0.5, 0.5) which implies that the throughput region

coincides with the throughput region of a network in which a

genie informs wireless nodes of the interference pattern before

it even happens. Intuitively this is due to the fact that with

fully correlated channels, each transmitter cannot distinguish

between the two receivers and as a result, it is not able to

perform interference cancellation or interference alignment.

However, with negative correlation a transmitter’s power to

favor one receiver over the other improves (in terms of the

received number of new equations). This in turn enables the

transmitters to perform interference alignment and interference

cancellation more efficiently.

To study the impact of spatial correlation at the receivers on

the throughput region, we consider ρTx = 0 (i.e. independent

links at the transmitters), ρRx ∈ {−1/3, 0, 1}, and p = 0.5.

As ρRx moves from +1 to −1, the maximum achievable

sum-rate improves as in Fig. 2(b). For ρRx ∈ [−1,−1/3],
C (0.5, 0, ρRx) includes (R1, R2) = (0.5, 0.5) which implies

that the capacity region coincides with that of instantaneous

knowledge. Intuitively, negative spatial correlation at receivers

separates the signal subspace from the interference subspace

which results in higher network throughput, see Section IV

for more details.

IV. ARQ FOR CORRELATED PACKET NETWORKS

In this section we present the communication protocol of

Theorem 1 for a particular example (p = ρTx = ρRx = 0.5).

The complete proof can be found in [17]. We present the ARQ

function for the maximum symmetric sum-rate point as given

by

2β (p, ρTx)
(
1− pRx00

)
1 + β (p, ρTx)

∣∣∣∣∣
p=ρTx=ρRx=0.5

=
25

36
. (15)

Suppose each transmitter wishes to communicate m packets

to its intended receiver. It suffices to show that this task can be

accomplished (with vanishing error probability as m → ∞)

in 72/25m + O
(
m

2
3

)
time instants. The ARQ function is

divided into two phases described below.

Phase 1: At the beginning of the communication block, we

assume that the m packets at Txi are in an initial queue1

denoted by Qi→i, i = 1, 2. At each time instant t, Txi
transmits a packets from Qi→i and this packet will either stay

in this initial queue or will transition to one of the queues listed

1We assume that the queues are column vectors and packets are placed in
each queue according to the order they join in.
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Fig. 3. Based on the shadowing coefficients at the time of communication,
the status of packet �a is updated. We note that the shadowing coefficients are
learned with unit delay.

in Fig. 3. If at time instant t, Qi→i is empty, then Txi, i = 1, 2,

remains silent until the end of Phase 1. Qi→F includes the

packets for which no retransmission is required and potential

interference from Txī will be resolved by Txī.
Phase 1 continues for

1

1− pTx00
m+m

2
3 =

8

5
m+m

2
3 (16)

time instants, and if at the end of this phase, either of the

queues Qi→i is not empty, we declare error type-I and halt

the transmission (we assume m is chosen such that m
2
3 ∈ Z).

Assuming that the transmission is not halted, let Ni,1 and

Ni,2 denote the number of packets in queues Qi,1 and Qi,2

respectively at the end of the first phase, i = 1, 2. The

transmission strategy will be halted and error type-II occurs,

if any of the following events happens.

Ni,j > E[Ni,j ] + 2m
2
3

�
= ni,j , i, j ∈ {1, 2}. (17)

From basic probability, we have

E[Ni,1] =
pTx11m

1− pTx00
=

3

5
m, E[Ni,2] =

pTx01m

1− pTx00
=

1

5
m. (18)

At the end of Phase 1, we add deterministic packets (if

necessary) in order to make queues Qi,1 and Qi,2 of size

equal to ni,1 and ni,2 respectively as given above, i = 1, 2.

Statistically a fraction pRx01/p = 1/4 of the packets in Qi,1

and the same fraction of the bits in Qi,2 are known to Rxī,
i = 1, 2. Denote the number of bits in Qi,j known to Rxī by

Ni,j|Rxī . At the end of communication, if we have

Ni,j|Rxī <
pRx01
p

ni,j − 2m
2
3 =

1

4
ni,j − 2m

2
3 , i, j ∈ {1, 2},

we declare error type-III.

Furthermore using the Bernstein inequality, we can show

that the probability of errors of types I, II, and III decreases and

approaches exponentially to zero as m → ∞ (see [17]). For

the rest of this section, we assume that Phase 1 is completed

with no errors.

Phase 2: During this phase, we deliver sufficient number of

linearly independent combinations of packets to each receiver

so that they can decode their corresponding packets. We create

these linear combinations in such a way that they are of interest

to both receivers. Denote by Qc
1,1 and Qc

1,2 the fraction of the

packets in Q1,1 and Q1,2 respectively for which at the time of

transmission α22(t) = 1, and by Qnc
1,1 and Qnc

1,2 the fraction

of the packets in Q1,1 and Q1,2 respectively for which at the

time of transmission α22(t) = 0. Similar definitions apply to

Qc
2,1, Q

c
2,2, Q

nc
2,1 and Qnc

2,2. We have

E[N c
i,1] =

9

20
m, E[N c

i,2] =
3

20
m, i = 1, 2. (19)

Packets in Qnc
i,2 can be combined with packets in Qc

i,1 to

create packets of common interest as depicted in Fig. 4(a)

and Fig. 4(b). Packets in Qc
i,2 are needed at both receivers

(no combination in this case) as depicted in Fig. 4(c). Finally,

packets in Qc
i,1 minus the ones combined with packets in Qnc

i,2

are needed at both receivers, e.g., packet �a in Fig. 4(a) is

useful for both receivers. However for packets in Qc
i,1 and

Qc
ī,1

only half of them need to be provided to both receivers.

As a result, the expected number of total linearly independent

combinations needed at both receivers is given by:

2× 3

20
m︸ ︷︷ ︸

Qc
i,2

+2× 1

20
m︸ ︷︷ ︸

Qnc
i,2 + w/ Qc

i,1

+
8

20
m︸ ︷︷ ︸

remaining in Qc
i,1

=
4

5
m. (20)

We conclude that Txi only needs to create 2/5m+O
(
m

2
3

)
linearly independent equations of the packets in Qi,1 and Qi,2,

i = 1, 2, and deliver them to both receivers.

The problem of delivering packets to both receivers has the

same capacity as the multiple-access channel formed at each

receiver for which a rate-tuple of (R1, R2) = (5/16, 5/16)
is achievable. Using the communication protocol of the two-

multicast problem, Phase 2 lasts for

8

5︸︷︷︸
multicast

× 4

5
m︸︷︷︸

# of eqs needed

+O
(
m

2
3

)
=

32

25
m+O

(
m

2
3

)
(21)

time instants. If any error takes place, we declare error and

terminate the communication. Thus to continue, we assume

that the transmission is successful and no error has occurred.

Decoding: The idea is that upon completion of the communi-

cation protocol, each receiver has sufficient number of linearly

independent equations of the desired packets to decode them.

A detailed discussion can be found in [17].

Achievable rates: Assuming that no error occurs, the total

communication time is:

8

5
m︸︷︷︸

Phase 1

+
32

25
m︸ ︷︷ ︸

Phase 2

+O
(
m

2
3

)
=

72

25
m+O

(
m

2
3

)
(22)

time instants which is what we expected.
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Fig. 4. (a) and (b): Packets in Qnc
i,2 can be combined with packets in Qc

i,1 to create packets of common interest: �a+�c and �b+ �d are of common interest to
both receivers; (c) Packets in Qc

i,2 are needed at both receivers.

V. CONVERSE PROOF OF THEOREM 1

The derivation of the bounds on individual rates is straight-

forward, and thus omitted. To derive the other bounds, we first

present an extremal rank-ratio lemma tailored to correlated

channels. The proof of this lemma can be found in [17].

Lemma 1 (Extremal Rank-Ratio Inequality for Spatially

Correlated Channels). For the two-user spatially correlated
wireless packet network as described in Section II and for
p ∈ SρTx

∩ SρRx
, p �= 0, and β given in (14), we have

E [rank [Gn
21V

n
1 ]] ≥

1

β (p, ρTx)
E [rank [Gn

11V
n
1 ]] . (23)

Using Lemma 1, we have

n (R1 + β (p, ρTx)R2)
a.s.
= E

[
dim

(
ProjIc

1
colspan (Gn

11V
n
1 )
)]

+ β (p, ρTx)E
[
dim

(
ProjIc

2
colspan (Gn

22V
n
2 )
)]

(a)

≤ E [rank [Gn
11V

n
1 ]]− β (p, ρTx)E [rank [Gn

21V
n
1 ]]

+ β (p, ρTx)E [rank [Gn
21V

n
1 +Gn

22V
n
2 ]]

Lemma 1
≤ β (p, ρTx)E [rank [Gn

21V
n
1 +Gn

22V
n
2 ]]

(b)

≤ nβ (p, ρTx) (1− pRx00), (24)

where the first equality is needed to guarantee that (12) holds;

(a) follows since we ignored interference at Rx1; (b) holds

since Rx2 does not receive any useful information pRx00 fraction

of the time. Dividing both sides of (24) by n and let n → ∞,

we get R1 + β (p, ρTx)R2 ≤ β (p, ρTx) (1 − pRx00). Similarly,

we can obtain the other bound.

VI. CONCLUSION

We characterized the throughput region of spatially corre-

lated interference packet networks. We learned that spatial cor-

relation at the transmitters defines the shape of the throughput

region while spatial correlation at the receivers defines its size.

An interesting future direction is to consider stochastic packet

arrival with delivery deadline.
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